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Abstract: Peripheral Artery Disease (PAD) is a common manifestation of 
atherosclerosis, characterized by lower leg ischemia and myopathy in 
association with leg dysfunction. In the present study, Spontaneous and 
coherent anti-Stokes Raman scattering (CARS) spectroscopic techniques in 
CH-stretching spectral region were evaluated for discriminating healthy and 
diseased tissues of human gastrocnemius biopsies of control and PAD 
patients. Since Raman signatures of the tissues in the fingerprint region are 
highly complex and CH containing moieties are dense, CH-stretching 
limited spectral range was used to classify the diseased tissues. A total of 
181 Raman spectra from 9 patients and 122 CARS spectra from 12 patients 
were acquired. Due to the high dimensionality of the data in Raman and 
CARS measurements, principal component analysis (PCA) was first 
performed to reduce the dimensionality of the data (6 and 9 principal scores 
for Raman and CARS, respectively) in the CH-stretching region, followed 
by a discriminant function analysis (DFA) to classify the samples into 
different categories based on disease severity. The CH2 and CH3 vibrational 
signatures were observed in the Raman and CARS spectroscopy. Raman 
and CARS data in conjunction with PCA-DFA analysis were capable of 
differentiating healthy and PAD gastrocnemius with an accuracy of 85.6% 
and 78.7%, respectively. 
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1. Introduction 

Spontaneous Raman spectroscopy is a common technique used to characterize materials using 
their vibrational signatures. Each peak in the spectrum corresponds to a specific molecular 
vibration mode, such that the spectrum could be a direct function of the molecular 
composition of the material. In this non-destructive technique, external labels are not required 
for identifying biochemical changes in various tissues [1–4]. Many efforts have been made to 
classify the Raman spectra of normal and abnormal tissues, demonstrating the correlation 
between diseased situation of the tissues and their chemical compositions [5–7]. 

The main drawback of spontaneous Raman spectroscopy is its weak Raman scattering 
efficiency (lower than 1 in 107) that requires high laser power, long acquisition time, or large 
accumulation number to obtain high-quality Raman spectra or mapping [8]. Although the 
sensitivity can be improved by applying a gold-coated glass substrate [9], which has better 
fluorescence background suppression and surface plasmonic enhancement, this drawback still 
has severely limited the applications of Raman microscopy in biomedical studies. On the 
other hand, coherent anti-Stokes Raman scattering (CARS), a nonlinear optical process, 
provides the same Raman vibrational signatures but stronger signals, which is suited for 
applications that require rapid analysis. In CARS, it involves the interaction of four waves 
designated as pump (p), Stokes (s), probe (p′), and anti-Stokes, where pump and probe waves 
are usually fixed to the same frequency (ωp = ωp′). When the frequency difference between 
the pump and the Stokes beams matches with the resonant vibrational frequency of a Raman 
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active molecular vibration, the molecular vibration is coherently driven by the excitation 
fields, thereby generating a strong anti-Stokes signal at ωas = 2ωpump – ωStokes. CARS benefits, 
unlike spontaneous Raman, from the constructive interference of light scattered by spectrally 
overlapping vibrational modes within the focal volume, thus enabling rapid acquisition and 
analysis [10]. When compared to spontaneous Raman spectroscopy, CARS also has many 
other advantages such as no fluorescence interference and high spatial resolution. 

The CH region of organic biomolecular compounds is much more congested and is much 
harder to differentiate than the fingerprint region. However, the signal-to-noise ratio for the 
CH region is better than that of the fingerprint region and important information can be 
collected from relative changes in the CH-stretching region of CH containing moieties in 
biomolecular compounds. Relative to collecting broad spectra, limiting the spectral range 
increases acquisition rates, which is essential for mapping tissues over larger areas. Together, 
the chemical information in the fingerprint (500-1600 cm−1) and CH-stretching (2840-3000 
cm−1) regions of Raman spectra have been used to characterize and stratify cancerous tissues 
with high sensitivity and selectivity [11,12]. 

Since CARS is particularly sensitive to CH-rich molecules [13,14], this technique could 
yield sufficient spectral features in the CH-stretching region to identify tissue components and 
to discriminate certain diseases such as peripheral artery disease (PAD). PAD is a common 
manifestation of atherosclerosis, characterized by lower leg ischemia and myopathy in 
association with leg dysfunction [15]. It is present in at least 25% of individuals over the age 
of 70 years [16,17]. Intermittent claudication, i.e., limping in response to walking-induced 
pain relieved by rest, is the major clinical manifestation of PAD [17,18]. The pathophysiology 
of PAD is complex and is often observed with comorbid conditions such as hypertension, 
diabetes, dyslipidemia, cigarette smoking, and/or physical inactivity. Patients with PAD are at 
high risk for myocardial infarction, stroke, and all-cause mortality [19]. Those patients have 
up to six times the 10-year mortality of age-matched controls [20,21]. PAD has long been 
under-diagnosed, and disease in up to half of those affected by PAD is yet to be detected [17]. 
Reasons for this include the high prevalence of asymptomatic disease, inappropriate use of 
screening and diagnostic tools, and poor awareness of PAD [22]. The methods used for 
diagnosis of PAD include ankle-brachial index (ABI), doppler and ultrasound (Duplex) 
imaging, computed tomographic angiography (CT), and magnetic resonance angiography 
(MRA). Each method has its own advantages and disadvantages. 

It was reported that oxidative damage to gastrocnemius myofibers in PAD patients 
increased with advancing disease and was associated with reduced myofiber cross-sectional 
area [23]. A discriminant model based on myofiber morphometrics separated PAD from 
control patients and provided a grading of muscle degeneration within clinical stages of PAD 
[24]. Human enterovirus (HEV) has been implicated in the pathogenesis of a number of 
muscle diseases and has been detected in the skeletal muscle of patients with PAD and is 
associated with severity of the disease [25]. In addition to the efforts for a better physiological 
understanding of the pathogenesis and treatment options for PAD patients, an effective and 
reliable method is needed to diagnose the disease in its early stage. Since tissue samples have 
many chemical constituents and their biomolecular vibrational signatures are quite complex, 
Raman analysis of only one or two pathology-related peaks is not expected to classify reliably 
the disease status [5]. The solution is to apply multivariate analysis in a specific spectral 
region, to extract useful information and identify variables important for classification. 
Several studies have used Raman spectroscopy with multivariate statistical analysis for 
biological samples to detect diseases such as cancer [26–29], Huntington’s disease [30], and 
asthma [31]. Multivariate analysis such as principal component analysis (PCA) is one of the 
most commonly used methods for transforming spectral data [32]. This leads to the 
classification method known as principal component-discriminant function analysis (PC-
DFA) [33]. The objectives of the present study are to 1) analyze healthy and PAD diseased 
human gastrocnemius muscle biopsies using both Raman and CARS techniques in the CH-
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stretching region and 2) use PC-DFA multivariate analysis to evaluate the ability of 
Spontaneous Raman and CARS to discriminate healthy from PAD gastrocnemius. 

2. Materials and method 

2.1. Tissue sample preparation 

The experimental protocol was approved by the Institutional Review Board of the VA 
Nebraska and Western Iowa Medical Center, and all subjects gave informed consent. The 
currently used clinical PAD staging [34] is based on the presentation of the patient. 
Specifically, patients at: 1) Stage I are asymptomatic, 2) Stage II present with intermittent 
claudication (walking-induced pain relieved by rest), 3) Stage III experience ischemic leg 
pain at rest, and 4) Stage IV develop necrosis and gangrene in the affected lower limb(s). In 
this study, we analyzed tissue from control patients (healthy) and from patients with Stage II 
disease (functional limb ischemia; moderate) and Stage III/IV disease (critical limb ischemia; 
severe). 

The full description of the tissue sample collection and preparation can be found in 
previous study [24,35]. Biopsies from human gastrocnemius (calf muscle) were acquired with 
a Bergstrom needle, fixed in methacarn, and embedded in paraffin. The 4 µm-thick tissue 
specimens were mounted on 100 nm nanostructured gold-coated slides (Platypus 
Technologies, Madison, WI) for Raman measurements and on regular glass slides for CARS 
measurements, respectively. Prior to spectral acquisitions, the slide specimens were 
deparaffinized with xylene, rehydrated through a series of ethanol washes and allowed to air 
dry. Since Spontaneous Raman and CARS techniques are based on intrinsic molecular 
vibrations, they do not require labeling. 

2.2. Raman spectroscopy measurements 

Raman spectra were recorded using a Renishaw micro-Raman microscope (InVia Reflection) 
with 633-nm diode laser excitation. The laser power was 10 mW. The laser beam was focused 
onto the center of the myofiber surface by a 50 × microscope objective with a numerical 
aperture of 0.75 (Leica n PLAN EPI 50 × /0.75) to a spot size of 1 μm in diameter. In the 
experiment, myofibers were randomly chosen for recording the Raman spectra. The center of 
the myofiber excited by the laser, which represented the entire myofiber, was photo-bleached 
for 30 s and then the spectrum was recorded with an exposure time of 1 s and accumulated by 
50 times. Thus it is about 2 min for one Raman spectrum acquisition. The tissue specimens 
were mounted on gold-coated glass slides for better suppression of fluorescence background 
and surface plasmonic enhancement. The Raman data sets used in the study are shown in 
Table 1. A total of 9 tissues specimens from different patients were tested and about 20 
spectra per slide were recorded. 

Table 1. Raman data sets tested in this study 

Patient Code Healthy / disease severity Number of spectra 
H333 Healthy 20 
H372 Healthy 21 
H438 Healthy 20 
H368 Moderate 20 
H369 Moderate 20 
H378 Moderate 20 
H373 Severe 20 
H409 Severe 20 
H415 Severe 20 

2.3. CARS spectroscopy measurements 

The femtosecond (fs) broadband CARS microscopy based on a photonic crystal fiber light 
source was used to measure the muscle tissue specimens. The details about this setup have 
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been described elsewhere; note, however, that the CARS signal was detected with a 
spectrometer instead of a photomultiplier tube [36]. The powers for the pump and the 
broadband Stokes beams before entering the microscope were 40 and 60 mW, respectively. 
Although the instantaneous power is quite high, the ultrashort pulse duration significantly 
minimizes the heat effect, which occurs and results sample damage when continuum wave 
lasers are used. As for Raman spectroscopy, myofibers were randomly chosen for recording 
the CARS spectra and the spectrum from the center of the myofiber can represent the entire 
myofiber. Because CARS collects anti-Stokes Raman signals, interference from fluorescence 
is minimal and therefore no photo-bleaching was performed prior to the data collection unlike 
in Raman spectroscopy. Each CARS spectrum was recorded with an exposure time of 1 s and 
accumulated by 10, so the total acquisition time for a single CARS spectrum is ~10 s. The 
tissues measured by CARS were mounted on regular glass slides to keep the best optical 
transmission. The CARS data sets are shown in Table 2. In CARS experiments, 12 tissue 
specimens from 12 different patients were analyzed and about 10 spectra from each slide 
were recorded. 

Table 2. CARS data sets tested in this study 

Patient Code Healthy / disease severity Number of spectra 
H333 Healthy 10 
H418 Healthy 9 
H433 Healthy 8 
H438 Healthy 9 
H345 Moderate 10 
H368 Moderate 12 
H369 Moderate 10 
H378 Moderate 11 
H350 Severe 10 
H373 Severe 12 
H409 Severe 11 
H415 Severe 10 

2.4. Data preprocessing and PC-DFA analysis 

Data preprocessing of the raw Raman spectra included baseline correction and normalization 
techniques. Baseline corrections were performed by Vancouver Raman algorithm with five-
point boxcar smoothing and a 5th order polynomial fit. Vancouver Raman algorithm is a 
robust iterative modified multi-polynomial fitting algorithm that removes intrinsic 
autofluorescence, background signals and improves signal to noise ratios [37]. After baseline 
correction, the spectra were normalized using the standard normal variate technique, which is 
designed to remove multiplicative error and preserve the same contribution to the results for 
each spectrum. Raw CARS spectra were preprocessed only by the standard normal variate 
technique to minimize multiplicative error. Since CARS is free of the autofluorescence, no 
baseline correction was applied. 

The preprocessed spectra were then analyzed by the PC-DFA method utilizing 
“mixOmics” package in R software. The PCA reduced the dimensionality of the Raman (499 
independent variables from 2500 to 3200 cm−1) and CARS spectra (551 independent variables 
from 2500 to 3100 cm−1) to 6 and 9 principal component scores (PCs), respectively. DFA was 
performed on these PCs which served as input independent variables. Classification efficacy 
was determined by cross-validation method (“leave-one-out” method). This method removes 
one spectrum at a time from the data set and predicts the classification of this spectrum by 
finding the discriminant model built with the other data. 

3. Results and discussion 

The CH-containing chemical groups, which are rich in lipid and protein molecules, produce 
overlapping vibrational bands from CH, CH2 and CH3 groups which complicate a detailed 
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assignment of the band structures of most biomolecular compounds. Although CH regions 
give less information about most components of the biological samples, possible differences 
between healthy and diseased tissues can be determined by evaluation of spectral signatures 
in CH region using PC-DFA multivariate analysis. The details of mode assignments for CH-
region can be seen in Table 3. 

Table 3. Peak assignments of the Raman spectra of the CH region 

Peak position (cm−1) Major assignments 

2900 and 2915 CH symmetric stretching 

2845–2850 CH2 symmetric stretching 

2880–2910 CH2 asymmetric stretching 

2865–2885 CH3 symmetric stretching 
2960 and 2970 CH3 asymmetric stretching 
2904–2906, 2918 and 2954 CH2-fermi (multiple) 

2925–2940 CH3-fermi resonance 

*Assignments are mainly based on reference [38]. 

3.1. PC-DFA results for Raman measurements in the CH region 

To have a complete view of the Raman spectra of three levels of PAD, all preprocessed 
spectra (2200 – 3550 cm−1) from the same PAD levels were simply averaged and then 
normalized at 3300 cm−1, as shown in Fig. 1(a). As can be seen, the tissue spectra consisted of 
CH2 and CH3 stretching bands of lipids or proteins. The peak at 2845 cm−1 is from CH2 
symmetric stretching. The peak located at 2875 cm−1 is attributed to CH3 (asymmetric 
stretching) and the larger band around 2930 cm−1 is assigned to CH3 (fermi resonance) groups 
(Table 3). The relative intensity of the peaks at 2845 (CH2) and 2875 cm−1 (CH3) increased as 
disease level increased, indicating the possibility of structural changes in the alkyl sides of 
lipids and/or proteins because of PAD. 

 

Fig. 1. (a) Averaged preprocessed Raman spectra of healthy tissue and two PAD levels: 
moderate and severe. The spectra have been normalized at 3300 cm−1 and offset vertically for 
clarity. (b) PC-DFA plot showing the two discriminant function scores of a total 181 Raman 
spectra from healthy tissue and two levels of PAD. 

In the PC-DFA analysis, the CH region 2500-3200 cm−1 of the preprocessed Raman was 
used. Figure 1(b) shows the PC-DFA plot for healthy tissue and PAD stages. Each colored 
point represents a spectrum which is plotted as its discriminant function DF1 and DF2 scores. 
It is obvious that the three groups are recovered in clusters separated well from each other; 
however, there were a few overlaps mostly between severe and moderate levels, which could 
be thought as reasonable due to the biochemical similarity of the diseased tissues. 
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In PCA, a highly complex chemical system (499 independent variables from 2500 to 3200 
cm−1) was reduced to a small number of PCs (6) that effectively carry all the important 
information from the spectral data. Figure 2 shows the first three PC loadings which 
correspond to the variation of PCs as a function of wavenumber. PC #1 carries the most 
important data with 86.7% of the total variance. The two bands at 2845 and 2875 cm−1 in the 
loading plot of PC #1 clearly show CH2 and CH3 stretching vibrations, respectively. As can 
be seen, both bands at 2845 and 2875 cm−1 become more obvious after the processing. The 
PC #2 and PC #3 carried only 3.87% and 2.93% of the total variance, respectively. 

To determine the differences between healthy and diseased tissues and check if the first 
PC loading acquired from PCA was reliable, the averaged healthy spectrum was simply 
subtracted from the averaged severe spectrum. This derived spectrum and PC #1 loading 
spectrum were plotted in the Fig. 2(d), which revealed high similarity between two spectra. A 
strong correlation between these spectra showed that CH2 and CH3 vibration modes could be 
a significant indicator for PAD detection. 

 

Fig. 2. Raman spectra of first three principal component loadings of the PCA, where (a) is PC 
#1, (b) PC #2, and (c) PC #3; (d) PC #1 loading of the PCA plotted with the spectrum obtained 
by subtracting the averaged healthy spectrum from that of severe. 

The classification accuracy of PC-DFA, as shown in Table 4, was determined by the 
cross-validation method as described earlier. As can be seen in Table 4, total 2 spectra of the 
healthy group in the first data set was misclassified as moderate and none of the healthy group 
was classified as severe; for diseased cases, some of the spectra were correctly identified as 
moderate or severe while others were misclassified to the healthy group. Most 
misclassifications were in the neighboring class rather than extreme class. For three 
categories: healthy, moderate, and severe, the overall accuracy of Raman spectral data found 
was to be 85.6% (Table 4). It should be noted that each Raman spectrum was acquired from 
the center of each myofiber in the tissues. Actually, the myofibers in the muscle tissues are 
extremely heterogeneous. In order to analyze the spectral variations between myofiber to 
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myofiber than within the myofibers, we assumed that the center of the myofiber would 
represent the entire myofiber and the spectrum obtained from the center would reflect the 
condition of the whole fiber. In the experiment, we took spectra from similar anatomical 
locations (center) in each myofiber for demonstration of the effectiveness of the approach. 
The sample selection here was random and the center of the myofibers was identified by the 
operator based on his experience with the architecture of the tissue. Our approach may, 
therefore, introduce subjectivity in the sample selection process which may affect the final 
classification results. Moreover, although the tissues evaluated clearly belonged either to 
healthy control subjects or patients with PAD, not every myofiber was healthy in the samples 
from healthy subjects nor every myofiber was damaged in the samples from PAD patients. 
This effect may be another important reason for the misclassification in the model. 
Considering these biochemical variations, the overall accuracy of 85.6% is acceptable for 
PAD classification. 

Table 4. Classification accuracy of PC-DFA based on Raman data (cross-validation 
method) 

Patient Code Healthy / disease severity PC-DFA as Healthy PC-DFA as Moderate PC-DFA as Severe 
H333 Healthy (20) 19 (95.0%) 1 (5.0%) 0 
H372 Healthy (21) 21 (100.0%) 0 0 
H438 Healthy (20) 19 (95.0%) 1 (5.0%) 0 
H368 Moderate (20) 3 (15.0%) 16 (80.0%) 1 (5.0%) 
H369 Moderate (20) 4 (20.0%) 8 (40.0%) 8 (40.0%) 
H378 Moderate (20) 0 20 (100.0%) 0 
H373 Severe (20) 0 1 (5.0%) 19 (95.0%) 
H409 Severe (20) 0 6 (30.0%) 14 (70.0%) 
H415 Severe (20) 0 1 (5.0%) 19 (95.0%) 

Overall accuracy 85.6% 

3.2. PC-DFA results of CARS spectra in the CH region 

CARS is sensitive to the same CH vibrational signatures as Raman spectroscopy. As 
discussed earlier, CARS has many advantages compared to spontaneous Raman spectroscopy, 
such as no fluorescence interference, strong vibrational signals, rapid analysis, and high 
spatial resolution. Although the fs pulse applied and the nonresonant background influence in 
CARS imply the lower spectral resolution that reduces spectral quality in the measurement, 
the information extracted from CARS spectra in the CH region by PC-DFA could be still 
useful for detection of PAD disease. To have a view of the CARS spectra of healthy tissue 
and two levels of PAD, all preprocessed spectra from the same levels were averaged and then 
normalized at 3200 cm−1, as shown in Fig. 3(a). Because of low spectral resolution, the CH2 
and CH3 stretching bands in CARS spectrum were not separated properly. Different 
excitation laser wavelengths (633 nm for Raman, and 800 nm for CARS) caused slight 
changes in peak locations. Figure 3(b) shows the PC-DFA plot of the CARS data for healthy 
tissue and PAD tissues. The three groups were mostly recovered in clusters separated from 
each other, as observed by Raman spectroscopy. However, there was still some overlap 
among healthy and two levels of diseased samples. 

Similar to the Raman analyses, PCA was performed first in the CH region (2500-3100 
cm−1) for the CARS data set to reduce the data dimensions (551 independent variables) to a 
smaller number of PCs (9) that effectively carry most the important information from the 
spectra. Figure 4 shows the first three PC loadings which correspond to the variation of PCs 
as a function of wavenumber for CARS analysis. 
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Fig. 3. (a) Averaged preprocessed CARS spectra of healthy tissue and two PAD levels: 
moderate and severe. The spectra have been offset vertically for clarity. (b) A PC-DFA plot 
showing the first two discriminant function scores of a total of 122 CARS spectra from healthy 
tissue and two levels of PAD. 

PC #1 carried the most important data with 46.3% of the total variance. The wide band 
around 2920 cm−1 in the loading plot of PC #1 clearly shows the CH3 symmetric stretching 
mode. However, the symmetric stretching vibration peak of CH2 was not detected because of 
low resolution of CARS technique. The next two highest loading plots of PC #2 and PC #3 
represented as 39.5% and 3.4% of the total variance, respectively. The spectrum derived by 
subtraction of the averaged healthy spectrum from the averaged severe spectrum, and PC #1 
loading spectrum were plotted in the Fig. 4(d). As can be seen, there is a similarity between 
the PC #1 loading plot and the difference plot as observed with the Raman data. 

 

Fig. 4. CARS spectra of first three principal components loadings of the PCA, where (a) is PC 
#1, (b) PC #2, and (c) PC #3; (d) PC #1 loading of the PCA plotted with the spectrum obtained 
by subtracting the averaged healthy spectrum from that of the severe. 
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Table 5. Classification accuracy of PC-DFA based on CARS data (Cross-validation 
method) 

Patient Code 
Healthy / disease 

severity 
PC-DFA as 

Healthy 
PC-DFA as 
Moderate 

PC-DFA as Severe 

H333 Healthy (10) 7 (70.0%) 0 3 (30.0%) 
H418 Healthy (9) 5 (55.6%) 2 (22.2%) 2 (22.2%) 
H433 Healthy (8) 5 (62.5%) 1 (12.5%) 2 (12.5%) 
H438 Healthy (9) 6 (66.7%) 1 (11.1%) 2 (22.2%) 
H345 Moderate (10) 1(10.0%) 9 (90.0%) 0 
H368 Moderate (12) 1 (8.3%) 10 (83.3%) 1 (8.3%) 
H369 Moderate (10) 0 4 (40.0%) 6 (60.0%) 
H378 Moderate (11) 0 10 (90.1%) 1 (9%) 
H350 Severe (10) 0 1(10%) 9 (90%) 
H373 Severe (12) 0 0 12 (100%) 
H409 Severe (11) 0 0 11 (100%) 
H415 Severe (10) 2 (20%) 0 8 (80%) 

Overall accuracy 78.7% 

The classification accuracy of the PC-DFA of the CARS data determined by the cross-
validation method is presented in Table 6. Despite correct identification, there were also 
misclassifications of some healthy, moderate and severe spectra as observed with Raman 
data. Most misclassifications were in the neighboring class. The overall accuracy based on the 
CARS data was 78.7% (Table 5). In our experiment, the average time for one Raman 
spectrum acquirement is about ~2 min including 30 s photon-bleaching time, 1 s exposure 
time, and 50 accumulation times. While, the average time for acquiring one CARS spectrum 
is about 10 s. Although the overall accuracy was less than the one found for Raman data 
(85.6%), it is still competitive since CARS microscopy enables high-speed collection 
compared to spontaneous Raman spectroscopy, considering the minute-scale operation is 
quite long for in clinical application. 

3.3. Classification performance and discussion towards clinical applications 

Classification accuracy of tissues from healthy individuals and patients with moderate or 
severe PAD, based on the spectra from each level is presented in Table 6. Identification of 
moderate and severe disease was similar for both methods, however; Raman was significantly 
more sensitive on identification of healthy tissues compared to CARS. Only two healthy 
spectra were misclassified among 61 healthy spectra (Table 6). In order to evaluate the 
sensitivity and specificity of Raman and CARS performance, the spectral data were divided 
into two categories (healthy and diseased). The sensitivity of 94.2% and specificity of 96.7% 
were calculated in Raman test, while the sensitivity of 95.4% and specificity of 63.9% were 
calculated in CARS test. Although CARS suffers a low specificity rate, it seems to be 
sensitive on identification of PAD severity, which indicates that CARS may be a competitive 
tool compared to Raman for differentiating tissues from patients with moderate and severe 
PAD, by PC-DFA. Actually the setup, spectral analysis method, and classification 
performance of CARS in our study still have room for improvement. For example, the 
spectral resolution of the fs broadband CARS used in this study is estimated to be ~30 cm−1, 
which however can be improved using a picosecond (ps) laser and a tunable optical 
parametric oscillator (OPO) ultrafast laser [39]. It was reported that the spectral resolution can 
be improved to ~10 cm−1 and the resonant CARS spectra can be extracted [40], which in 
principle has potential to have better classification performance. Moreover, many research 
efforts have been made to design and develop CARS probes [41], even the CARS endoscopy 
[42]; therefore if these maturing CARS probe technique involved, CARS has potential 
towards clinical applications. 
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Table 6. Classification accuracy of Raman and CARS 

 
PC-DFA 
as Healthy 

PC-DFA 
as Moderate 

PC-DFA 
as Severe 

Healthy Raman (61) 59 (96.7%) 2 0 

Healthy CARS (36) 23 (63.9%) 4 9 

Moderate Raman (60) 7 45 (75.0%) 9 

Moderate CARS (43) 2 33 (76.7%) 8 

Severe Raman (60) 0 8 52 (86.7%) 

Severe CARS (43) 2 1 40 (93.0%) 

In a previous study, we focused on the fingerprint region (400-1800 cm−1) [35]. We 
averaged all spectra from different myofiber for one patient and used these averaged data in a 
partial least squares regression model. Thus the data set included a total of 15 averaged 
spectra (5 for healthy, 5 for each disease levels). However, the current work represents larger 
numbers of spectra. We used a total of 181 spectra from 9 patients for Raman spectroscopy 
and a total 122 of spectra from 12 patients for CARS. We showed that CH region could be a 
good choice for PAD application. The overall accuracy is 85.6% for Raman and 78.7% for 
CARS, respectively. Because not every fiber was damaged by disease or not every myofiber 
was healthy in healthy tissues, some misclassifications in both measurements were 
unavoidable. Biochemical variations among patients and myofiber lowered the classification 
accuracy compared to our previous Raman study. 

Other studies such as Doppler, ultrasound, computed tomographic angiography etc. 
measure changes in the blood supply to the legs to help with the diagnosis and staging of 
PAD. However, the pathophysiology of PAD and its effects on the ischemic lower limbs 
cannot be explained simply by changes in the blood flow of the affected legs [43]. Our work 
responds to the need for the development of new methods that can directly evaluate the 
skeletal muscle as the end-organ affected in the ischemic legs. Our methods and findings 
represent an initial attempt to quantify the damage produced by PAD in the affected leg 
muscle. Measurements of skeletal muscle degeneration such as those obtained using Raman 
and CARS spectroscopy can complement the measures obtained from tests of blood flow, 
effectively expanding the information available to vascular specialists; thereby improving 
their ability to appropriately stage and treat patients with PAD. 

4. Conclusions and future work 

We performed Raman measurements to identify biochemical changes in CH containing 
moieties in the tissues and therefore, to determine damage to the muscle. Both the 
spontaneous Raman and CARS spectroscopy, in conjunction with PC-DFA, were applied to 
the problem of diagnosis of PAD. The overall accuracies for Raman and CARS were 85.6% 
and 78.7%, respectively. Considering the biochemical variation of the tissue samples, both 
overall accuracies are high. Because of the lower spectral resolution in CARS, accuracy for 
this technique was expected to be lower, however; CARS is still competitive compared to 
Raman because of its nature advantages, especially allowing fast data collection. Future 
research work could involve maturing CARS probe techniques for fast and better diagnostic 
performance and also make it towards clinical applications. 
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